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Rotating rings of tetrahedra are well known from recreational mathematics.
Rings of N tetrahedra with N even are analyzed by symmetry-adapted versions
of classical counting rules of mechanism analysis. For N ≥ 6 a single state of self-
stress is found, together with N − 5 symmetry-distinct mechanisms, which include
the eponymous rotating mechanism. For N = 4 in a generic configuration, a single
mechanism remains together with three states of self-stress, but uniquely in this
case the mechanism path passes through a bifurcation at which the number of
mechanisms and states of self-stress is raised by one.
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1. Introduction

Rotating rings of tetrahedra are well known from recreational mathematics (Rouse
Ball, 1939; Cundy and Rollet, 1981). An example is shown in Figure 1. These
rings can be assembled from planar nets or by origami (Mitchell, 1997), and with
recent ‘microorigami’ techniques have been constructed on a millimetre scale as
prototypes for micro-fabrication in 3D (Brittain et al., 2001). The rings are often
associated with decorations of the plane with various patterns and are also known
as Kaleidocycles (Schattschneider and Walker, 1977; Schattschneider, 1977). The
underlying mathematical objects are members of a family of cycles of edge-fused
polyhedra having 2N vertices, 5N distinct edges, and 4N triangular faces where
the faces are those of N edge-sharing tetrahedra, and where each tetrahedron in the
cycle is linked to its predecessor and successor at opposite edges. Certain members of
this family display an ‘amusing and confusing’ (Stalker, 1933) motion in which each
tetrahedron of the toroidal ring turns, the whole turning inside out like a smoke-
ring. The shared edges act as hinges between rigid tetrahedral bodies. Rotating
rings of tetrahedra were described in a patent in 1933 (Stalker), but objects of this
form occur in the earlier mathematical literature (Brückner, 1900). Animations of
the motion are available at a number of sites on the world-wide web, e.g. Stark
(2004).

Attention has centred on the case where the tetrahedra are equilateral, N is
even, and N is greater than or equal to six. For N = 8 the motion is continuous,
returning repeatedly to the starting configuration. For N = 6 the range of mo-
vement is restricted by clashes between faces, but the underlying motion can be
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Figure 1. The finite motion of the rotating ring of six tetrahedra, showing one quarter of
a complete cycle: (a) D3h high symmetry point (the standard configuration); (b) generic
C3v symmetry; (c) D3d high symmetry point; (d) generic C3v symmetry; (e) D3h high
symmetry point. The tetrahedra are numbered, and the shared (hinge) edges between
tetrahedra have been marked with a dashed line. Note that, in travelling from (a) to
configuration (e), the structure has interchanged horizontal and vertical sets of shared
(hinge) edges.

made continuous if the tetrahedra are transformed to an ‘isosceles’ shape by shrin-
king the shared edges; the system can be considered as a particular example of a
‘threefold symmetric Bricard linkage’ (Chen et al., 2005). The key feature common
to equilateral and isosceles geometries is that successive shared edges remain mu-
tually perpendicular. The present paper will concentrate on the cases of rings of N
tetrahedra with this perpendicular hinge geometry and where N is even.

Our aim is to provide a general analysis of the mechanisms and states of self-
stress in this subset of rotating rings of tetrahedra. For this purpose we use the
recently developed symmetry-extended versions of the classical tools of mechanism
analysis, the mobility criterion (Guest and Fowler, 2005) and the Maxwell counting
rule (Fowler and Guest, 2000). The mobility criterion treats each tetrahedron as
a rigid object, constrained by hinges along two opposite edges; Maxwell counting
considers each tetrahedron to be formed from six spherically-jointed edge bars,
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where two opposite bars are shared with neighbouring tetrahedra. Each description
implies a relationship between the symmetries of mechanisms, states of self-stress
and structural components; this approach takes full advantage of the high point-
group symmetry of the even-N rings of tetrahedra.

Counting and symmetry analysis for toroidal frameworks has been considered
before in the context of toroidal deltahedra (Fowler and Guest, 2002). There, it was
shown that fully-triangulated toroids have at least six states of self-stress of well
defined symmetry. Like the rotating rings, toroidal deltahedra have all triangular
faces, but unlike the rings, the deltahedra are ‘toroidal polyhedra’ in that they
enclose a single connected toroidal volume and all their edges are common to exactly
two faces. The rotating rings, in which the enclosed tetrahedral volumes are disjoint
and some edges are incident on four faces, are not polyhedral in this sense, and a
different analysis is required.

2. Preliminary counting analysis

We begin with classical counting analyses, using both the mobility rule and the
Maxwell count.

A generalised mobility rule is given in Guest and Fowler (2005) as

m − s = 6(N − 1) − 6g +

g∑

i=1

fi (2.1)

where m is the mobility (Hunt, 1978), or number of mechanisms, of a mechanical
linkage consisting of N bodies connected by g joints, where each joint i permits
fi relative freedoms, and s is the number of independent states of self-stress that
the linkage can sustain. The parameter s can be considered equivalently as the
number of overconstraints, independent geometric incompatibilities, or misfits, that
are possible for the linkage. In the present case, N is the number of tetrahedra, and
there are g = N hinge joints each permitting a single relative freedom, i.e., the
revolute freedom between two adjacent tetrahedra. Thus,

m − s = N − 6. (2.2)

The generalised Maxwell count for a system of spherically jointed bars is given
by Calladine (1978) as

m − s = 3j − b − 6 (2.3)

where j is the number of spherical joints and b is the number of bars connecting
them. In the present case, j = 2N and b = 5N , so that m − s = N − 6 from (2.3)
in agreement with the mobility criterion (2.2).

As both m and s are non-negative integers, simple counting has therefore esta-
blished the existence of at least one mechanism for N > 6, and conversely at least
one state of self-stress for N < 6. From the counting result, the smallest ring of
tetrahedra for which a mechanism must exist is that with N = 7, and indeed such
a mechanism has been remarked in this case, and described as having ‘an entire
lack of symmetry’ (Rouse Ball 1939).

For the case N = 6, counting alone does not demonstrate the existence of the
known mechanism, but it does establish that if such a mechanism exists, then so
must a state of self-stress.
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In fact, a separate kinematic argument can be used to demonstrate that, in a
generic configuration, s = 1 for all even N ≥ 6. The argument runs as follows.
Consider a ring in a standard position where the centres of the hinges define a
planar N -gon, with N/2 of the hinges lying in the plane of the polygon, and the
same number lying perpendicular to it. Cutting the ring along a single joint gives
a chain of linked tetrahedra. This cut chain cannot sustain a state of self-stress:
equilibrium of a terminal tetrahedron implies that the joint to the next tetrahedron
in the chain is unstressed, and the same argument can be extended to the next
in the chain, and so on for each of the other tetrahedra in turn. Thus any state
of self-stress of the ring is contingent on restoration of the original joint, and is
generated by a geometric misfit at the restored joint. Detailed consideration of the
five possible misfits (corresponding to the five independent kinematic constraints
imposed by a revolute joint) shows that four can be accommodated by rotation
of the remaining N − 1 ≥ 5 joints. The only type of misfit that cannot be so
accommodated is twisting, and a misfit of this sort leads to a single ‘twisting’ state
of self-stress. Hence s = 1 in the standard position. As the same argument can be
advanced for nearby configurations, s = 1 in any generic configuration.

Given that s = 1, it follows from (2.2) shows that the number of mechanisms
for even N ≥ 6 is given by

m = N − 5. (2.4)

Hence, the number of mechanisms grows linearly with N , although the counting
approach gives no indication of the nature of these additional mechanisms; further
insight into this aspect is given by considering the symmetry of the system.

3. Symmetry analysis: N = 6

This section will treat the case N = 6 in explicit detail, as a preliminary to a general
analysis for all even N derived in section 4. The symmetry extension of the Maxwell
counting rule is used; exactly equivalent results are given by the corresponding
extension of the mobility rule.

The symmetry extension of Maxwell’s rule (Fowler and Guest, 2000) is

Γ(m) − Γ(s) = Γ(j) × ΓT − Γ(b) − ΓT − ΓR (3.1)

where Γ(m), Γ(s), Γ(b) and Γ(j), are the representations of the m mechanisms,
s states of self-stress, b bars and j joints, and ΓT , ΓR are the translational and
rotational representations (Atkins et al. 1970), all within the point group of the
instantaneous configuration.

We will consider the ring of six tetrahedra in each of the three symmetry-distinct
configurations that it can assume. In the standard position (Figure 1(a)), the six
tetrahedra are arranged with D3h point symmetry. The centres of the six hinges
define a planar hexagon; hinges lie alternately in, and perpendicular to, this σh

mirror plane. The normal through the centre of the hexagon defines the axis for
the three-fold proper and improper rotations C3 and S3. A C2 axis is defined by
each horizontal hinge, and passes through the centre of the opposite, perpendicular,
hinge. Each σv mirror plane contains one vertical, and one horizontal, hinge-line.

The Maxwell symmetry analysis can be laid out in tabular form as:
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Figure 2. Vector fields with the symmetry (a) Γz, and (b) Γε on the torus. In D3h, Γz = A
′′

2

and Γε = A
′′

1 . Field (a) represents a motion by which inner and outer equators of the
toroidal surface are exchanged, and by analogy with the pattern of current induced in a
toroidal molecule by a rotating magnetic field, which gives rise to a molecular anapole
moment (Ceulemans et al., 1998), can be called an ‘anapole’ rotation.

D3h E 2C3 3C2 σh 2S3 3σv

Γ(j) 12 0 2 6 0 4

×ΓT 3 0 −1 1 −2 1

36 0 −2 6 0 4

−ΓT − ΓR −6 0 2 0 0 0

30 0 0 6 0 4

−Γ(b) −30 0 −2 −6 0 −2

Γ(m) − Γ(s) 0 0 −2 0 0 2

which reduces to

D3h Γ(m) − Γ(s) = A′′

2 − A′′

1 (3.2)

Hence symmetry analysis has predicted a mechanism of A′′
2 symmetry, accom-

panied by a state of self-stress of A′′
1 symmetry. A′′

2 is the symmetry of the anapole

rotation of a torus (Figure 2(a)) and describes the eponymous ‘rotating’ motion of
this ring of tetrahedra. A′′

1 is the symmetry of a counter-rotating pattern on a torus
(Figure 2(b)) that describes the state of self-stress that would be generated by a
twisting mismatch at each hinge.

If we displace the structure along the pathway of the A′′
2 mechanism, the symme-

try of the whole object falls to C3v, with loss of C2, σh and S3 symmetry elements. In
the reduced symmetry of this generic C3v configuration (Figure 1(b)), the Maxwell
calculation gives

C3v Γ(m) − Γ(s) = A1 − A2. (3.3)

This result can be verified by deleting columns in the tabular calculation above, or
applying the ‘descent in symmetry’ correlation (Atkins et al. 1970)

A′

1, A′′

2 (D3h) → A1(C3v),

A′

2, A′′

1 (D3h) → A2(C3v).

In C3v the mechanism is totally symmetric, and as there is no equisymmetric state
of self-stress, the local linear analysis that we have carried out here is sufficient
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to show that the mechanism for the ring of six tetrahedra is finite (Kangwai and
Guest, 1999) i.e., even for finite displacements, there is a continuous mechanism
path in the configuration space of the ring of tetrahedra.

If the finite mechanism is followed further along the displacement coordinate,
the structure passes through a second point of high symmetry, a D3d configura-
tion (Figure 1(c)) where alternate hinges lie an equal angle above and below the
horizontal plane. In this ‘antiprism’ configuration

D3d Γ(m) − Γ(s) = A2u − A1u. (3.4)

Continuation of the motion leads through C3v configurations (Figure 1(d)) back
to a D3h position (Figure 1(e)) where horizontal and vertical hinges have been ex-
changed with respect to the initial setting. The cyclic nature of this finite mechanism
is apparent.

Note that although its formulation across the three particular point groups uses
different representation labels, the symmetry of the mobility excess for the ring of
six tetrahedra is always compatible with the single expression,

Γ(m) − Γ(s) = Γz − Γε (3.5)

where Γz is the symmetry of a translation along the principal axis, and Γε is the
representation of a pseudo-scalar (a quantity whose sign is preserved under pro-
per, and reversed under improper operations). The mechanism is always an ana-
pole rotation of an underlying torus, and the state of self-stress always follows a
counter-rotating pattern on the torus, irrespective of the particular symmetry of
the instantaneous configuration. Figure 2 shows how Γz and Γε link to patterns of
vectors on the torus.

To summarize, use of the Maxwell counting rule in its symmetry-adapted form
has enabled us to give a complete account of the interesting static and kinema-
tic behaviour for N = 6. Use of the symmetry-adapted mobility criterion (Guest
& Fowler, 2005) gives the same results. This case has only one mechanism, the
characteristic anapole rotation, but, as we have seen from pure counting, more me-
chanisms emerge for larger N . These too are amenable to a symmetry treatment,
as the following section will demonstrate.

4. Symmetry analysis: the general case

The previous analysis can be generalised to cover all even values of N . Again we
concentrate on Maxwell analysis, although all results reported here could also be
obtained with the symmetry version of the mobility criterion. We consider the same
sequence of standard D(N/2)h, generic rotated C(N/2)v, and alternate high-symmetry
D(N/2)d antiprism configurations. For these groups we will use the notation C(φ)
for the symmetry operation of rotation through φ about the principal axis, and
S(φ) for the corresponding improper operation. C(φ) and C(−φ) belong to the
same class, as do S(φ) and S(−φ). It turns out to be convenient to consider doubly
odd cases, N = 4p+2, and doubly even cases, N = 4p, separately. The case N = 4p
is further split into N = 4p, p > 1 and N = 4, p = 1, as the standard notation for
point groups C2v, D2h, D2d (p = 1) differs from that for C2pv, D2ph, D2pd (p > 1).
In addition to this technicality the case p = 1 also presents some special features
that justify a separate treatment, given in Section 5.

Article submitted to Royal Society



Rotating rings of tetrahedra 7

(a) Rings with N = 4p + 2

In the standard position, the N tetrahedra are arranged with D(N/2)h = D(2p+1)h

point symmetry. The centres of the hinges define a planar N -gon; hinges lie alter-
nately within, and perpendicular to, the σh mirror plane. The normal through the
centre of the hexagon defines the principal axis. A C ′

2 axis is defined by each hori-
zontal hinge, and its opposite perpendicular partner; the same pair of hinges defines
a σv mirror plane. The structure has (2p + 1) C ′

2 axes, and (2p + 1) σv planes.
The Maxwell symmetry analysis is:

D(2p+1)h E 2C(φ) (2p + 1)C ′
2 σh 2S(φ) (2p + 1)σv

Γ(j) 8p + 4 0 2 4p + 2 0 4

×ΓT 3 c+ −1 1 c− 1

24p + 12 0 −2 4p + 2 0 4

−ΓT − ΓR −6 −2c+ 2 0 0 0

24p + 6 −2c+ 0 4p + 2 0 4

−Γ(b) −20p − 10 0 −2 −4p − 2 0 −2

Γ(m) − Γ(s) 4p − 4 −2c+ −2 0 0 2

where c± = ±1 + 2 cos φ. To reduce Γ(m) − Γ(s) to a tractable form, we note that
a representation ΓΛ defined by

ΓΛ = Γ(m) − Γ(s) + ΓT + ΓR − Γz + Γε (4.1)

would have only integer characters

D(2p+1)h E 2C(φ) (2p + 1)C ′
2 σ(h) 2S(φ) (2p + 1)σv

ΓΛ 4p + 2 0 −2 0 0 0

and specifically has a character under the identity that is equal to half the order of
the point group. The structure of ΓΛ is most easily understood by considering the
limit N → ∞, D(2p+1)h → D∞h. In D∞h, ΓΛ reduces to an angular-momentum
type expansion

ΓΛ = Σ−

g + Σ+
u + Πg + Πu + ∆g + ∆u + Φg + Φu + . . . (4.2)

with leading terms ΓT = Σ+
u +Πu, ΓR = Σ−

g +Πg followed by symmetries of scalar
(∆g + Φu + . . .) and vector (∆u + Φg + . . .) cylindrical harmonics.

The symmetries in the series Πg + ∆g + Φg + . . . and Πu + ∆u + Φu + . . . are
compactly written as ELg and ELu respectively, where (L = 1) ≡ Π, (L = 2) ≡ ∆,...
(Altmann and Herzig, 1994). Representations EL(g/u) are defined by their character
under the operations of D∞h as:

D∞h E 2C(∞φ) C2 ∞C ′
2 i 2S(∞φ) σ(h) ∞σv

ELg 2 2 cos LΦ 2(−1)L 0 2 2(−1)L cos LΦ 2(−1)L 0
ELu 2 2 cos LΦ 2(−1)L 0 −2 −2(−1)L cos LΦ −2(−1)L 0

from which it is seen that the characters of ELg and ELu are equal under proper
operations, and equal but opposite in sign under improper operations.

In the compact notation, (4.2) becomes

Article submitted to Royal Society



8 P.W. Fowler and S.D. Guest

D∞h ΓΛ = A2g + A1u +

p∑

L=1

(ELg + ELu) (4.3)

(Σ−
g ≡ A2g, Σ+

u ≡ A1u) which on descent back to D(2p+1)h is

D(2p+1)h ΓΛ = A′

2 + A′′

2 +

p∑

L=1

(E′

L + E′′

L) (4.4)

which can be written as

D(2p+1)h ΓΛ = ΓT + ΓR +

p∑

L=2

(E′

L + E′′

L) (4.5)

where ΓT = A′′
2 + E′

1, ΓR = A′
2 + E′′

1 , giving the final form of Γ(m) − Γ(s) as

D(2p+1)h Γ(m) − Γ(s) = A′′

2 − A′′

1 +

p∑

L=2

(E′

L + E′′

L) (4.6)

where A′′
2 = Γz and A′′

1 = Γε in this group. Note that the result (4.6) reduces to
(3.2) for D3h, N = 6, p = 1, where the summation term would disappear.

Displacement along the Γz anapole mechanism takes the ring of tetrahedra to
a C(2p+1)v point on the rotation pathway. The horizontal plane, C ′

2 axes and S(φ)
improper axes are then no longer symmetry elements. The appropriate forms of
equations (4.4) and (4.6) are

C(2p+1)v ΓΛ = A1 + A2 + 2

p∑

L=1

EL, (4.7)

C(2p+1)v Γ(m) − Γ(s) = A1 − A2 + 2

p∑

L=2

EL. (4.8)

Again, the results for N = 6, p = 1 are recovered by deleting the summation terms.
At the intermediate ‘antiprism’ hinge configuration, the ring of tetrahedra has

D(2p+1)d symmetry. In this point group, all perpendicular C ′
2 axes fall into a single

class, each axis passing though the centres of opposite tetrahedra, and through the
mid-points of four non-hinge bars. The σd mirror planes also constitute a single
class, and each plane contains two opposite hinge bars. The equations (4.4) and
(4.6) become

D(2p+1)d ΓΛ = A2g + A2u +

p∑

L=1

(ELg + ELu), (4.9)

D(2p+1)d Γ(m) − Γ(s) = A2u − A1u +

p∑

L=2

(ELg + ELu). (4.10)

Again, the results for N = 6, p = 1 are recovered by deleting the summation terms.
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(b) Rings with N = 4p, p > 1

In the standard position, the N tetrahedra are arranged with D(N/2)h = D(2p)h

point group symmetry. In D(2p)h there are two classes of binary rotation axis (C ′
2,

C ′′
2 ) perpendicular to the principal axis, and two classes of reflection plane (σv, σd)

that contain the principal axis. We choose C ′
2 to bisect two vertical hinges and C ′′

2

to contain two horizontal hinges. Consequently σv contains two vertical hinges, and
σd contains two horizontal hinges.

The Maxwell symmetry calculation in tabular form is:

D(2p)h E 2C(φ) C2 pC ′
2 pC ′′

2 i 2S(φ) σh pσd pσv

Γ(j) 8p 0 0 0 4 0 0 4p 4 4

×ΓT 3 c+ −1 −1 −1 −3 c− 1 1 1

24p 0 0 0 −4 0 0 4p 4 4

−ΓT − ΓR −6 −2c+ 2 2 2 0 0 0 0 0

24p − 6 −2c+ 2 2 −2 0 0 4p 4 4

−Γ(b) −20p 0 0 −2 −2 0 0 −4p −2 −2

Γ(m) − Γ(s) 4p − 6 −2c+ 2 0 −4 0 0 0 2 2

where again c± = ±1 + 2 cos φ. To reduce Γ(m) − Γ(s), we again invoke ΓΛ (4.1),
which now has the integer characters

D(2p)h E 2C(φ) C2 pC ′
2 pC ′′

2 i 2S(φ) σ(h) pσd pσv

ΓΛ 4p 0 0 0 −4 0 0 0 0 0

and again has the form of an angular momentum expansion in the D∞h supergroup.
As there is no distinction between C ′

2 and C ′′
2 in D∞h, there is a subtlety in

the termination of the expansion when N is doubly-odd: ΓΛ is of order 4p, and
therefore can include only half of the four combinations comprised within the final
pair of degenerate representations Epg + Epu. In D(2p)h, p > 1, Epg + Epu reduces
to B1g +B2g +B1u +B2u and inspection of characters under E and C ′′

2 shows that
the half to be retained is B1g +B1u, the part of Epg +Epu with character −1 under
C ′′

2 . Thus the form of ΓΛ in D(2p)h, p > 1 is

D(2p)h ΓΛ = A2g + A2u + B1g + B1u +

p−1∑

L=1

(ELg + ELu). (4.11)

(Notice the change in labelling for Γz = Σ+
u on descent from D∞h to D(2p)h: in

D∞h, the Altmann-Herzig convention is Γz = A1u but in D(2p)h with 1 < p < ∞,
Γz = A2u.) From (4.11) ΓΛ can be written for p > 1 as

D(2p)h ΓΛ = ΓT + ΓR + B1g + B1u +

p−1∑

L=2

(ELg + ELu) (4.12)

and the final form of Γ(m) − Γ(s) for p > 1 is then

D(2p)h Γ(m) − Γ(s) = A2u − A1u + B1g + B1u +

p−1∑

L=2

(ELg + ELu), (4.13)
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10 P.W. Fowler and S.D. Guest

where, as noted above, A2u = Γz and A1u = Γε in this group.
Displacement along the Γz anapole mechanism takes the ring of tetrahedra to

a C(2p)v point on the rotation pathway. The horizontal plane, C ′
2 and C ′′

2 axes and
S(φ) improper axes are then no longer symmetry elements. The appropriate forms
of equations (4.11) and (4.13) are

C(2p)v ΓΛ = A1 + A2 + B1 + B2 + 2

p−1∑

L=1

EL, (4.14)

C(2p)v Γ(m) − Γ(s) = A1 − A2 + B1 + B2 + 2

p−1∑

L=2

EL. (4.15)

Finally, at the intermediate ‘antiprism’ hinge configuration, the ring of tetra-
hedra has D(2p+1)d symmetry. In this point group, all perpendicular C ′

2 axes fall
into a single class, each axis passing though the centres of opposite tetrahedra, and
through the mid-points of four non-hinge bars. The σd mirror planes also constitute
a single class, and each contains two opposite hinge bars. The equations (4.11) and
(4.13) become

D(2p)d ΓΛ = A2 + B2 +

2p−1∑

L=1

EL, (4.16)

D(2p)d Γ(m) − Γ(s) = B2 − B1 +

2p−2∑

L=2

EL. (4.17)

(c) Interpretation

We have derived explicit formulae for the mobility excess of rings of tetrahedra
with doubly-odd and doubly-even N in each of three distinct symmetry groups.
All six formulae (4.6, 4.8, 4.10, 4.13, 4.15, 4.17) can be subsumed in one general
expression

Γ(m) − Γ(s) = Γz − Γε + (ΓΛ − ΓT − ΓR) (4.18)

where Γz is the non-degenerate representation of a one-parameter anapole mecha-
nism transforming in the same way as simple translation along the main axis of the
underlying torus, and Γε is the non-degenerate representation of the unique state
of self-stress. The final term (ΓΛ − ΓT − ΓR) includes contributions with negative
weights, but as ΓΛ contains complete copies of ΓT and ΓR for N ≥ 6, the bracketed
term is well defined: it is either vanishing (N = 6), or positive (N > 6).

Given that (ΓΛ − ΓT − ΓR) is a reducible representation with non-negative
weights, and given the kinematic result s = 1, the mobility excess (4.18) resolves
into separate expressions for the symmetries spanned by the states-of-self-stress and
mechanisms:

Γ(s) = Γε, (4.19)

Γ(m) = Γz + (ΓΛ − ΓT − ΓR), (4.20)

valid for generic configurations of rings with even N ≥ 6.
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Figure 3. Representation of the single state of self-stress (a) and mechanisms (b)–(j), of
rings of rotating tetrahedra, shown as decorations of a torus.

For N = 6: (a) shows A
′′

2 ; (b) shows A
′′

1 .
For N = 8: (a) A1u; (b) A2u; (c) B1g; (d) B1u.
For N = 10: (a) A

′′

2 ; (b) A
′′

1 ; (c)&(e) E
′

2; (d)&(f) E
′′

2 .
For N = 12: (a) A1u; (b) A2u; (c)&(e) E2g; (d)&(f) E2u; (g) B1u; (h) B1g.
For N = 14: (a) A

′′

2 ; (b) A
′′

1 ; (c)&(e) E
′

2; (d)&(f) E
′′

2 ; (g)&(i) E
′

3; (h)&(j) E
′′

3 .
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12 P.W. Fowler and S.D. Guest

Figure 4. A ring of 12 tetrahedra in the standard setting. The faces of the tetrahedra have
been shaded with the same colour scheme used in Figure1(a), and shared (hinge) edges
between tetrahedra have been marked with a dashed line.

The angular-momentum description of ΓΛ (4.3) gives a physical picture of the
sets of mechanisms for N > 6 that are additional to the characteristic anapole
rotation. As noted earlier, (ΓΛ − ΓT − ΓR) has terms of two types. In D∞h, the
representations E2g, E3u, E4g, . . . are those of scalar cylindrical harmonics, which
can be visualised with appropriate patterns of shading on the torus (Figure 3,
(c)&(e), (g)&(i)). A given En(g/u) in this series describes a pair of functions that
are interconverted on rotation of π/2n about the main toroidal axis, each having
n nodal planes containing that axis. Both members of the pair are symmetric with
respect to reflection in the horizontal mirror plane. The alternate representations
E2u, E3g, E4u, . . . are those of vector cylindrical harmonics, and describe pairs of
vector fields on the torus, again interconverting under rotation by π/2n, again
having n nodal planes containing the vertical cylinder axis, but now antisymmetric
with respect to reflection in the horizontal plane; each vector symmetry is related
to a scalar harmonic symmetry through multiplication by Γz (Eng × A1u = Enu).
The vector harmonics can also be visualised with appropriate shading of the torus
(Figure 3, (d)&(f), (h)&(j)).

Physical models of the mechanisms of the ring of tetrahedra follow from the
visualisations of Figure 3; for simplicity, we shall consider these in the standard
setting. The case N = 12 is shown in the standard setting in Figure 4. The ring of
N tetrahedra in the standard setting has N/2 vertical and N/2 horizontal hinges.
A full description of the mechanisms is given if the freedoms of these two sets of
hinges are treated separately, considering in turn one set to be locked and the other
free to move.

Consider initially the case where the horizontal hinges are locked. The freedoms
of a planar cycle of rigid bodies connected pairwise by N/2 perpendicular revolute
hinges can be represented by sets of N/2 scalars (+ for opening, − for closing, say).
If these scalars are considered using an angular momentum description (for N = 12
this is shown in Figure 5), then neither the concerted opening motion (Λ = 0)
nor the pair of motions with a single vertical plane of antisymmetry (Λ = 1),
correspond to mechanisms. The remainder of the N/2 independent combinations
of hinge freedoms span exactly the series E2g, E3u, E4g, . . . of the scalar cylindrical
harmonics. When N/2 is even, the mechanisms occur in pairs; when N/2 is odd, one
function at the highest value of Λ has nodes at all hinge positions and is dropped
from the series.
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Figure 5. An angular momentum expansion of scalar values (not normalised) representing
the opening or closing of the six vertical hinges in a ring of 12 tetrahedra. The bars between
the vertical hinges correspond to pairs of tetrahedra joined by a locked horizontal hinge.
(a) Λ = 0; (b) Λ = 1; (c) Λ = 2; (d) Λ = 3. The dashed lines show nodal planes. Λ = 0
and Λ = 1 do not correspond to mechanisms.
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Figure 6. An angular momentum expansion of the vectors representing the opening or
closing of the six horizontal hinges in a ring of 12 tetrahedra; each value is the magnitude
of a vertical vector (not normalised). The bars between the horizontal hinges correspond
to pairs of tetrahedra joined by a locked vertical hinge. (a) Λ = 0; (b) Λ = 1; (c) Λ = 2;
(d) Λ = 3. The dashed lines show nodal planes. The pair Λ = 1 does not correspond to
mechanisms; Λ = 0 is the anapole rotation.
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Likewise, consider the case where the vertical hinges are locked. The freedoms
of a planar cycle of rigid bodies connected pairwise by N/2 in-plane revolute hinges
can be represented by sets of N/2 vectors normal to the cycle plane (+ phase in
the half space of the hinge motion corresponding to approach of the connected
bodies, say). If these vertical vectors are considered using an angular momentum
description (for N = 12 this is shown in Figure 6) , the concerted motion of the
hinges (Λ = 0) now corresponds to the anapole rotation of the ring of tetrahedra
— instantaneously, at this configuration, the anapole mechanism requires rotations
about only the horizontal hinges. The pair of motions with a single vertical plane
of antisymmetry (Λ = 1) again do not correspond to mechanisms. The remainder
of the N/2 independent combinations of hinge freedoms span exactly the series
E2u, E3g, E4u, . . . of the vector cylindrical harmonics. When N/2 is even, the me-
chanisms occur in pairs; when N/2 is odd, one function at the highest value of Λ
has nodes at all hinge positions and is dropped from the series.

Once the ring of tetrahedra moves along any of the mechanisms, it loses the
symmetry of the standard setting, and mechanisms may begin to mix in symmetry,
with loss of the distinction between horizontal and perpendicular hinges, but the
cylindrical harmonics still give a qualitative picture of the number and types of
mechanism.

5. The special case N = 4

All of the analysis so far has been restricted to the rings of N ≥ 6 tetrahedra.
However, it is possible to assemble four suitably shaped tetrahedra in a ring. The
steric constraints are severe, and in particular it is not possible to use physical
regular tetrahedra, but for example right angled ‘quarter-tetrahedra’ formed by
joining two opposite edge mid-points and two vertices of a regular tetrahedra are
possible components. Much of the previous analysis applies in this case, although
the equivalence of the symmetry results is obscured by differences in notation for
abelian and non-abelian groups.

The case N = 4 has one obvious difference from the larger rings in that there is a
bifurcation in the path followed by the mechanism. This is most clearly revealed by
starting, not at the standard (in this case D2h) configuration, but at the alternative
high-symmetry point, the D2d arrangement of four tetrahedra. Figure 7 shows the
D2d arrangement of four ‘skinny’ tetrahedra, and its equivalence to a set of four
cubes. Figure 8 illustrates the bifurcation of the mechanism of the four-ring. Relative
rotation (a) about one pair of collinear hinges leads from the D2d configuration I,
through a sequence of C2v configurations (not shown) to the standard setting II;
here the hinges have D2h symmetry. Alternatively, relative rotation (b) about the
other pair of collinear hinges leads to a distinct D2h standard setting III. Each of
the paths (a) and (b) are theoretically continuous, crossing at I, although when
the ring is realised with the cubic blocks shown in the figure, steric clashes prevent
continuation of the paths through the high symmetry point; this would not be the
case with suitably skinny bodies. This is an example of a kinematotropic mechanism
in the extended sense defined by Galletti and Fanghella (2001).

Counting (2.2) gives the mobility of the ring of four tetrahedra/cubes as m−s =
−2. Symmetry analysis (3.1) gives the representation of the mobility in the different
point groups accessed by the mechanisms as
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hinge line

hinge line

Figure 7. A ring of four tetrahedra in a D2d configuration. The faces of the tetrahedra
have been shaded with the same colour scheme used in Figure1(c), shared (hinge) edges
between tetrahedra have been marked with a dashed line, and hidden lines are shown
in grey. Fine lines show a set of four cubes hinged together in the same way that has
equivalent mobility; the mechanisms are determined by the arrangement of hinge lines
rather than the details of the hinged bodies.

D2d(I) Γ(m) − Γ(s) = B2 − B1 − E (5.1)

C2v(I→II) Γ(m) − Γ(s) = A1 − A2 − B1 − B2 (5.2)

D2h(II) Γ(m) − Γ(s) = B1u − B3g − Au − B3u (5.3)

C2v(I→III) Γ(m) − Γ(s) = A1 − A2 − B1 − B2 (5.4)

D2h(III) Γ(m) − Γ(s) = B1u − B2g − Au − B2u (5.5)

The symmetry analysis in all configurations shows a single mechanism and three
states of self-stress. Analysis in the generic C2v configuration along one of the two
branches shows a totally symmetric mechanism with no blocking equisymmetric
state of self-stress; the mechanism is therefore finite (Kangwai and Guest, 1999).

Neither the counting nor symmetry analysis gives any hint of the presence of
a second mechanism at the D2d bifurcation point. Indeed this a clearly a geome-
tric phenomenon, critically dependent on the simultaneous collinearity of two pairs
of hinges at this configuration. This is compatible with, but not implied by D2d

symmetry; mechanisms which require special geometric configurations will always
escape a generic symmetry analysis, and require a specific analysis at the special
geometry. A structure in which the meeting points of the collinear pairs were sym-
metrically displaced along the z axis, leaving the outer ends of the hinges unshifted,
would still belong to the D2d point-group, but only the single mechanism predicted
by the symmetry mobility analysis would remain; such a system however would not
be a ring of tetrahedra in the strict sense defined in Section 1
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Figure 8. A set of four hinged cubes used to show the mobility of a ring of four tetrahedra:
the relationship between the four cubes and the four tetrahedra is shown in Figure 7.
I shows the D2d bifurcation configuration: two mechanism paths emerge. Relative rota-
tion (a) about one pair of collinear hinges leads from the D2d configuration I, through
a sequence of C2v configurations (not shown) to the standard setting II; here the hinges
have D2h symmetry. Alternatively, relative rotation (b) about the other pair of collinear
hinges leads to a distinct D2h standard setting III.

6. Conclusions

This paper provides a general symmetry analysis of a ring of even-N regular tetra-
hedra. Symmetry reveals that generically, for even N ≥ 6, the count m− s = N −6
comes from s = 1 states of self-stress, and a symmetrically distinct m = N − 5
mechanisms. The finite nature of these mechanisms is also shown, including the
eponymous ‘rotating’ mechanisms. The treatment shows the utility of a symmetry
analysis in enriching the information available from pure counting.

The N = 4 case has been considered separately. Here, generically, symmetry
shows that the count m − s = N − 6 comes from s = 3 states of self-stress, and
m = 1 mechanisms. Uniquely in this case the ‘rotating’ mechanism passes through
a particular geometric configuration where there is a bifurcation in the mechanism
path. Detection of the bifurcation is outside the symmetry classification.

The analysis as presented considers only even-N cases that lie on the path follo-
wed by the rotating mechanism. For N > 6, there are many other mechanism paths,
leading to lower symmetry configurations, and other points of mechanism bifurca-
tion, that could be followed; we have not considered these other paths, although
the general methodology remains valid for them.

It is possible to generalise the even-N ring of tetrahedra with mutually perpen-
dicular hinges that is considered in this paper. Odd-N rings can be constructed.
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The case N = 7 was noted by Coxeter (Rouse Ball, 1939), and we have constructed
an example using skinny tetrahedra. Generically it has C1 symmetry (no symme-
try operation other than the identity), but passes though two distinct C2 high-
symmetry configurations; in the generic C1 configuration, symmetry analysis re-
duces to simple counting.

The objects considered here all have a cylindrical topology: if a path around
the ring is followed, passing from one tetrahedron to the next along faces that are
adjacent, either across an edge or a vertex, then eventually the face that was the
initial starting point is reached. For skinny tetrahedra, it is also possible to join
even-N rings with a Mobius twist (Stark, 2004). We have constructed examples of
rings of tetrahedra with mutually perpendicular hinges that have a Mobius twist,
but found that accessible symmetries, at least for N = 8, are rather low.

Finally, recent investigations (Gan & Pellegrino, 2003; Chen et al., 2005) have
shown that the mobility of rings may persist under relaxation of the condition
that consecutive hinges are perpendicular. Many of these systems have potential
application as deployable structures.

SDG acknowledges the support of the Leverhulme Trust.
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